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1. INTRODUCTION

Let 7, denote the set of real algebraic polynomials of degree » or less and
let || - || be the uniform norm on Cla, b], the set of continuous, real-valued
functions defined on the interval [a, b]. The classical strong unicity theorem
(see Cheney [1], p. 80) asserts that if p; is the best uniform approximation to
fe Cla, b] from 7, , then there is a constant y > 0 such that ‘ ‘

Wf=pl =1 —pell +ylp—pll (1.1

or, equivalently,

lp—pell <UVSf =2l = 1f —ps 1) (1.2)

for all p € 7, . In a recent paper, Y. Fletcher and J. A. Roulier {2] have shown
that strong unicity can fail for monotone approximation in which the
approximating space consists of the nondecreasing polynomials in , . In
this paper, it is shown that an alternative concept which we call “strong
unicity of order %" is valid for monotone approximation. The setting of this
paper is somewhat more general than that of [2].

Let 1 <ky <k, <+ <k;<n bel integers and ¢, = +1(G =1,...,[)
be [ signs. In the monotone approximation problem considered by G. .G.
Lorentz and K. L. Zeller [4] and R. A. Lorentz [6], the approximating space
is

M, = M, (ky,.... k;; € ..y €)
={pem ep(x) =>0forxela bl,i=1,..,101

The approximating space in [2] is M, (1; 1). If p, is the best uniform approxi-
mation to fe Cla, b] from M, , we say that p; is strongly unique of order
a (0 < « < 1) if for each K > 0 there is a constant v > 0 such that

If=p I ZIf—pell + yllp — pe M (1.3)
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or, equivalently,

o —pll <Ay (f —p L —1If — P (1.4)

for all p e M, with || p || < K. The principle result of this paper is that if » is
large enough so that deg p; > k;, then best monotone approximations are
strongly unique of order 4. The example of Fletcher and Roulier [2] shows
that the order 4 cannot in general be improved. In doing this, we shall need
to extend a modified strong unicity result of Fletcher and Roulier 2] to the
more general setting of approximation from M, (%, ,..., k; ; € ,..., ). This is
accomplished with no change in their proof.

It is known that strong unicity and Lipschitz conditions for best approxi-
mation operators are related (see Cheney [1], p. 82). In this light, the best
uniform approximation operator corresponding to M,(ky ..., k15 € 5eens €}
is shown to satisfy a local Lipschitz condition of order 1 on bounded subsets
of Cla, b] when deg p; > k; . In addition, this operator is continuous even
if deg p; < k.

2. BACKGROUND AND NOTATIONS

The resuits of this paper depend on a characterization theorem of
G. G. Lorentz and K. L. Zeller [4] and a modification of a lemma of
R. A. Lorentz [6] used in establishing uniqueness of best approximations
from M, . In this section, we state the pertinent results from these papers
and introduce a seminorm and a norm on w, to be used in subsequent
analyses.

Let fe Cla, B]\M, and p; € M, . Define

4 = A(f, py) ={x€la,b]: [f(x) — pA0)] =f — ps 1} 2.1

and
B; = B{py) = {y € la, b}: pf*(») = 0} @2
fori=1,..,1 ForxeAd,let
a(x) = sgn[f(x) — pAx)]-
The characterization theorem of [4] follows.
Lemma 2.1, Let fe Cla, b\M, and p; € M,, . Then p; is a best approxima-
tion to f from M, if and only if there exist x,€ A (i = 1,...,p) and y; € B,

(G =1,..., A, i = 1,..., ) and positive numbers «; (i = 1,..., p)and B,(j = 1,..,,
Ay s B =1,..., 1) with

D=

p+ Y N<n+2 (2.3

2
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such that
© [ A;
Y ao(x) qx) + Y & Y, Bug™ N (yi) =0 24)
=1 {=1 j=1
forallgen, .

In the remainder of this paper, p; shall be the best approximation to f
from M, and the points x; and y,; shall be fixed. Let

14 =n1fdegpf 2kl
= k; — 1 if k, is the smallest k;, > deg p;.
Let ¢; denote the number of y;; in {a, b} and N = p — 1 + 3 , (2A; — e).

We shall be interested in the Birkoff interpolation problem (BIP) of finding a
g € 7y such that

gx) = a(i = 1,,..n) 2.5

¢ a) =bis (=L A, ki <) (2.6)

G (yy) = ey @<y <bj=l., X, ko <v. (@7

The following lemma differs from Lemma 2.2 of R. A. Lorentz [6] in that
he used deg p; in place of » an 4 and B; in place of the x; and y;; . The proof

is the same as Lorentz’ proof with the exception of an application of (2.4)
instead of another characterization theorem and is omitted.

LeMMA 2.2. The BIP (2.5)-(2.7) consists of N -+ 1 nonoverlapping condi-
tions and N = v -+ 1. The incidence matrix E for the BIP (2.5)-(2.7) satisfies
the strong Polya condition and contains no odd supported sequences. Thus the
BIP (2.5)-(2.7) has a unique solution in =y for every choice of the a; , b;; , and
Ci -

For reference on Birkoff interpolation, see Lorentz and Zeller [5].
For p €, , define

”p H, == max{lp(xl)l (i = 15"-5 M’),

P92 (pa)l G = Loy Ay i = 1,0, 1)} (2.8)
and

IpI* = max{| p(x,)| (( = 1,..., p),
299yl G = Loy Ay i = 1,00, D),
P% ()l (@ <y <b,j= Loy Ay i = 1., D) (29)
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It is clear that || - | and || - ||* are seminorms on =, . The main use of
Lemma 2.2 is in the next lemma.

Lemma 2.3, Ifdegp; = ky, then || - ||* is a norm on w,, .

Proof. The proofis easy. If deg p; > k;, then N > v = n. As a result, the
only solution to the homogeneous BIP (2.5)-(2.7a; = b; = ¢; =0) in o,
is the trivial solution. If pen, and || p |* = 0, then p is a solution of this
homogeneous BIP and thus p = 0.

An important consequence of Lemma 2.3 1s that || - ||* and the uniform
norm || - || taken as norms on the finite dimensional space =, are equivalent.

3. StroNG UwiciTy oF ORDER 1/2

We remark that if fe M, , then (1.1) holds with v = 1. Henceforth, we
shall assume that f¢ M, .

The first theorem of this section is an extension of Theorem 4.2 of Fletcher
and Roalier [2] to the more general setting of approximation from M,
(ky s k15 €1 4oy €). The proof of this theorem is exactly the same as their
proof and thus is omitted.

TaeoreM 3.1. Let fe Cla, b\M,, , p; be the best uniform approximation
to ffrom M, , and| || be given by (2.8). Then there is a constant v > 0 such
that

Wf—pl ZIf—pll+vlp—pelf (3.
forallpe M, .

Fletcher and Roulier [2] proved independently of their Theorem 4.1 that
(1.1) holds for those p e M, for which p; — pe M,. We give a simpler
proof of this result using Theorem 3.1 and the ideas of Section 2. Again this
result is extended to the more general monotone approximation problem.

THEOREM 3.2. Letfe Cla, b\M, and p; be the best uniform approximation
to ffrom M, . If deg p; >k, , then there is a constant p > 0 such that

If—=plZlf—p A+ pllp—psl

forallpe M, withp¥Xyp,) =0forj=1,.,A,i=1,.,1L

Proof. Since || - ||* and || - || are equivalent norms on =, , there is a con-
stant p; >0 such that || g||* > p,| ¢l for all gemn,. Let pe M, with
PENy) = 0forj = 1,..., A, i = 1,..., I. Since ¢, p{*?(x) = Oand ¢, p"{(x) >
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0 for xe [a, b]a p}ki+1)(yij) :p(ki+1)(yij) =0 for a < Vi < b:] = 13-"5 )\z >
i=1,.,1 Hence, ||p — p,|I' =l p — p; ||*, and by (3.1) it follows that

Mf=pIZ1f—pll +Allp —pel*
ZIf—psll+ Ao lp —psll.

where A depends only on f. The proof is completed by letting p = Ap;, .

The proof of the main result of this paper is similar to the proof of
Theorem 3.2 in that we must obtain a relationship between || p — p; ||' and
lp — ps||* for certain p e M,,. In doing this we make use of the following
lemma.

LEmMA 3.3. Let pn(x) = X2q,{x) + apx + B for m =1, 2,..., where
each g, (x) is a real-valued function defined on |—1, 1] and the «,, and B,, are
real. If there is a constant M > O such that q,,(x) < M for all x € [—1, 1] and
all m, p(x) =0 for all xe[—1, 1], and limy e 0y, = liMy, oo B = 0, then
om? < AMB,, for all sufficiently large m.

Proof. Since g,,(x) < M for all xe[—1, 1],
0 < pul®) < MX® + otpX + B

for all xe[—1, 1]. Assume «,2 > 4MPp,, for infinitely many m. For such m,
the quadratic function Mx? 4 «,,x -+ B, has two distinct real zeros (—a,, --
(ot — AMPBY)22M.  Since Hmy,, e oty = limg, o, B = 0, MX® + a,,x +
Bm has two distinct real zeros in (—1, 1) for infinitely many m. As a result,
Mx,? + apXy + B < 0 for some x,, €(—1, 1) and for infinitley many m.
A contradiction is thus reached, and «,,> << 4Mp,, for all sufficiently large m.

THEOREM 3.4. Let fe Cla, b\M,, , and let p; be the best uniform approxi-
mation to f from M, . If deg p; =k, , then for each K > O there is a constant
v > 0 such that

IWf—pllZlf—p: I+ ylp—psl? (3.2)
Jorallpe M, with|| pl < K.

Proof. We assume that (3.2) does not hold. Then there is a sequence
{Pm}in M, with || p, || < Kand || p,, — p; | > 0 such that

W= pul = =Bl
B P 0 G-3)

m
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as m — oo. Since the || p, || < K, we may assume that p,, —p € M, uni-
formly on [a, b] as m — oo. Then by (3.3),

If=pl=1m]f— pnl
= 1im (1f ~ 2,1l + v | 2w — 2 )
= ||/ — psll-
Since best approximations from M, are unique (see R. A. Lorentz [6]), p =

py . Thus p,, — p, uniformly on {a, b] as m — .
Now by Theorem 3.1 there is a constant p > 0 such that

If=p = —psll+pllp —ps 34

forallpe M, .

We now show that (| p,, — 27 1*)? < py || P — P | for some p, > 0 and
all sufficiently large m. Since || -||* and || - || are equivalent norms on =, ,
| P — P71 — 0 as m — co. Fix y;; € (a, ). Since p*(py) = pfP(yy) =
0, limy e p%(3y) = UMy, p*B(y;) = 0. Also, p%(x) > 0 for all x
in the neighborhood [a, ] of y;; . Since {p{*?} is uniformly convergent, we
may write

PENx) = (x — 1) @u(®) + PETV () — yi) + 2 (3)

where the g,,(x) are uniformly bounded over [, 5]. Employing an appr{;priats
linear change of variable and using Lemma 3.3, there is a constant M;; > 0
such that

(PSP (y) P < My | D3 (5,)

for all sufficiently large ». Thus
(ki—i-l) Yo (ep+1) 212 < M.. | (75} DN () M
[P (yi) — b7 idl? < My | pn™(yis) — pr " (Yis)]

for m sufficiently large. Furthermore, || p,, — p;1' <1 for all sufficiently
large m. Taking o, = max{l, Myla < yy; < b,j=1,., & ,i=1,.,1}, we
have

(”Pm — Py ”*)2 < P1 Hpm - Pr H, (35)

for m sufficiently large.

Since| * ||* and || - || are equivalent norms on =, , there is a constant p, > 0
such that

P2l P — el < P — prI* 3.6
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for all m. By (3.4), (3.5), and (3.6), it now follows that

1f = pwll = Lf — s | + (ppelpDll P — Py IP

for all sufficiently large . This contradicts (3.3) and Theorem 3.4 is proven.

We remark that the dependence of y on K in Theorem 3.4 is essential.
This is easy to see as || p — p; |? grows faster than || f— p| as|p|— 0. In
addition, the example of Fletcher and Roulier [2] shows that the order
cannot in general be improved. We briefly review their example. Let [a, b] =
[-L,1,n=31l=k =¢ =1,and

FG) =3 — 2 + (x — 1/312),

Fletcher and Roulier showed that the best approximation to f from My(1; 1)
is

pAx) = (x — 1/31%?
and || f — p; || = % Moreover, for p, € My(1; 1) given by
Dofx) = (x — 1313 + ax(x® — (1 — o)),

we have [[f—p,l=%+ <« and | p,—psll =2l — «?#[332 for «
sufficiently small. For any 7 < 2,

If = pll = I = pell _ LA
I pa — P 1" [2(1 — *23 V3]

as o — 0. Furthermore, || p, — p;s | — 0 as « — 0. Hence p, is not $trongly
unique of order greater than {.

4. CoNTINUITY AND LipscHITZ CONDITIONS

The first theorem of this section asserts that the best monotone approxima-
tion operator is continuous with respect to the uniform norm topology on
Cla, b]. As with Theorems 3.1 and 3.2, this theorem is an extension of a
result of Fletcher and Roulier [2]. Unlike their proof, our proof does not
ostensibly depend on Birkoff interpolation. Instead we employ the techniques
of A. Krod {3]. In this section, we shall let 7°,( f) denote the best approxima-
tion to f from M, . N

THEOREM 4.1. The operator T, is continuous at each fe Cla, b] with
respect to the uniform norm topology on Cla, b].

Proof. Let fe Cla, b] and let {g,} be a sequence in C[a, b] such that
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My .o |l € — fl| = 0. We must show that lim,, ... || Tx(g.} — To(F)l = 0.
Assume otherwise. Then by extracting a subsequence and. relabeling, we
may assume that || 7,(g,) — To()l| = € for some ¢ > 0 and all m. It can
easily be seen that || T,.(g,)l < 2|l g || and hence the T,(g,) are uniformly
bounded. Thus we may assume that T,(g,.) — g € M,, uniformly on {a, 5] as
m — oo. The inequality

ll gm — Tul gl — ILf — Tl I <11 8w — 11
appears in A. Kro6 [3] and is easily established. Hence,

lim || g — To(gmlll = 1L — TalF)i

But
lim || g — Tu(gu)l = I/ — ¢l

By the uniqueness of best monotone approximations (see [6]), g == T,.(/)
and im,,.. || Tw{gn) — T = 0. This is a contradiction and the theorem
18 established.

The next theorem shows that if deg T,(f) > k;, then the continuity of
Theorem 4.1 is a local Lipschitz continuity of order 3.

THEOREM 4.2. Let f€ Cla, b] and assume that deg T,(f) = k,. Then for
each K > O there is a constant A > 0 such that

| Tn(g) — Tl N < Al g — FIM2 4.1
Jor all ge Cla, bl with || g || < K.

Proof. The proof follows directly from Theorem 3.4. If gl < K, then
I T}l < 2K. Select y > 0 such that

W —pll Z1f— T D+ yllp— Tl NP
foralipe M, with||p|| <2K. Ifge Cla, bland || g || < X, then

To(8) — Tul Al <y IS — Tl = 1f = T A
<y S = gl + g = Tl — If — Tl AP
<y (S~ gl + g — TPl — 1f = TLODY
<2yt | g — £

Thus (4.1) holds with X = (2/y)V/2.
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5. CONCLUSIONS

The main results of this paper are Theorems 3.4 and 4.2. Although strong
unicity of best monotone approximations can fail, strong unicity of order
% holds when deg p; > k;. This condition is not overly stringent for if
fé¢ My, 1, then deg p, > k; for all sufficiently large n. This condition is used
only in proving that || - [|* is a norm on =, . It would be interesting to in-
vestigate the necessity of this condition.

A subtle difference between Theorem 3.4 and ordinary strong unicity is
that (3.2) holds on bounded subsets of M, . This local nature cannot be
avoided for strong unicity of order less than 1. This follows because || p —
py|M* grows faster than || f— p | as || p || = oo when « < 1.

Although the order % is best possible for strong unicity, it is unknown
whether the order 1 is best possible for the Lipschitz condition.

It is the author’s view that further research on strong uniqueness need be
done for constrained approximation problems such as that of approximation
with restricted ranges on derivatives (see [7]). This view is based on the
observation that strong unicity appears in several convergence analyses for
algorithms to compute best approximations.
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